Home
Documentation
Who's using
Demo
Team
albumentations
Albumentations Documentation
albumentations
Welcome to Albumentations documentation
Introduction to image augmentation
Introduction to image augmentation
What is image augmentation and how it can improve the performance of deep neural networks
Why you need a dedicated library for image augmentation
Why Albumentations
Getting started with Albumentations
Getting started with Albumentations
Installation
Image augmentation for classification
Mask augmentation for segmentation
Bounding boxes augmentation for object detection
Keypoints augmentation
Simultaneous augmentation of multiple targets: masks, bounding boxes, keypoints
A list of transforms and their supported targets
Setting probabilities for transforms in an augmentation pipeline
Examples
Examples
List of examples
Defining a simple augmentation pipeline for image augmentation
Working with non-8-bit images
Using Albumentations to augment bounding boxes for object detection tasks
How to use Albumentations for detection tasks if you need to keep all bounding boxes
Using Albumentations for a semantic segmentation task
Using Albumentations to augment keypoints
Applying the same augmentation with the same parameters to multiple images, masks, bounding boxes, or keypoints
Weather augmentations in Albumentations
Migrating from torchvision to Albumentations
PyTorch and Albumentations for image classification
PyTorch and Albumentations for semantic segmentation
Debugging an augmentation pipeline with ReplayCompose
How to save and load parameters of an augmentation pipeline
Showcase. Cool augmentation examples on diverse set of images from various real-world tasks.
Using Albumentations with Tensorflow
Frequently Asked Questions
AutoAlbument - AutoML for Image Augmentation
AutoAlbument - AutoML for Image Augmentation
AutoAlbument Overview
Benchmarks and a comparison with baseline augmentation strategies
Installation
How to use AutoAlbument
How to use an AutoAlbument Docker image
How to use a custom classification or semantic segmentation model
Metrics and their meaning
Tuning the search parameters
Examples
Examples
List of examples
Image classification on the CIFAR10 dataset
Image classification on the SVHN dataset
Image classification on the ImageNet dataset
Semantic segmentation on the Pascal VOC dataset
Semantic segmentation on the Pascal VOC dataset
Search algorithms
FAQ
AutoAlbument introduction and core concepts
Albumentations Experimental
Albumentations Experimental
Albumentations Experimental Overview
Installation
API Reference
API Reference
Augmentations
Augmentations
Albumentations Experimental Transforms (augmentations.transforms)
External resources
External resources
Blog posts, podcasts, talks, and videos about Albumentations
Books that mention Albumentations
API Reference
API Reference
Core API
Core API
Composition API (core.composition)
Transforms Interface (core.transforms_interface)
Serialization API (core.serialization)
Augmentations
Augmentations
Transforms (augmentations.transforms)
Crop transforms
Crop transforms
Crop functional transforms (augmentations.crops.functional)
Crop transforms (augmentations.crops.transforms)
Geometric transforms
Geometric transforms
Geometric functional transforms (augmentations.geometric.functional)
Resizing transforms (augmentations.geometric.resize)
Rotation transforms (augmentations.geometric.functional)
Geometric transforms (augmentations.geometric.transforms)
Domain adaptation transforms (augmentations.domain_adaptation)
Functional transforms (augmentations.functional)
Helper functions for working with bounding boxes (augmentations.bbox_utils)
Helper functions for working with keypoints (augmentations.keypoints_utils)
Geometric augmentations (augmentations.geometric)
ImgAug Helpers
ImgAug Helpers
Transforms (imgaug.transforms)
PyTorch Helpers
PyTorch Helpers
Index
Transforms (pytorch.transforms)
Release notes
Contributing
Index
Transforms (albumentations.pytorch.transforms)